92 research outputs found

    Plant Biomarker Pattern, Apples grown with various availability of organic nitrogen and with or witout the use of pesticides

    Get PDF
    In the recent years there has been an increasing focus on the quality and health value of organic plant products compared with conventional products. The use of pesticides and concentrated fertilisers in conventional agriculture implies a risk of effects on plant composition, which may affect health of the consumer (Brandt & Mølgaard, 2001). To determine if organically grown plant food could provide more or less benefits to health than conventional food, a first step is to investigate the differences in the composition and relative concentration of natural compounds in the plant products. In this project apples were grown with two levels of nitrogen availability and with or without the use of pesticides. The apples were screened for changes in the phytochemical composition and concentration. The work is affiliated to the project "Organic food and health" supported by the Danish Research Centre for Organic Farming (DARCOF). Biomarkers and biomarker patterns were presented in plants cultivated with low and high N and with pesticides. One biomarker was related to: • the type of N with and without pesticides • pesticides at high N and type of N without pesticides • pesticides at low and high N One biomarker pattern was related to: • the type of N • the type of N without pesticides • pesticides at low N and type of N without pesticides • pesticides at high N and type of N with pesticide

    An intercomparison of models used to simulate the short range atmospheric dispersion and deposition of agricultural ammonia emissions

    Full text link
    Ammonia (NH3) emitted into the atmosphere from agricultural sources can have an impact on nearby sensitive ecosystems either through elevated ambient concentrations or dry/wet deposition to vegetation and soil surfaces. Environmental impact assessments are often carried out using short-range atmospheric dispersion models to estimate mean annual atmospheric concentrations and total annual deposition of NH3 at the ecosystem location. A range of different atmospheric dispersion models are used for these assessments depending on the location and experience of the assessors and have not, until now, been compared for these types of assessments. This poster compares and validates concentration predictions of four commonly used models (ADMS v4.11, AERMOD v070262, LADD3 and OPS-st4,5) for dispersion from agricultural sources using hypothetical and real case studie

    Assessment of xenoestrogenic exposure by a biomarker approach: application of the E-Screen bioassay to determine estrogenic response of serum extracts

    Get PDF
    BACKGROUND: Epidemiological documentation of endocrine disruption is complicated by imprecise exposure assessment, especially when exposures are mixed. Even if the estrogenic activity of all compounds were known, the combined effect of possible additive and/or inhibiting interaction of xenoestrogens in a biological sample may be difficult to predict from chemical analysis of single compounds alone. Thus, analysis of mixtures allows evaluation of combined effects of chemicals each present at low concentrations. METHODS: We have developed an optimized in vitro E-Screen test to assess the combined functional estrogenic response of human serum. The xenoestrogens in serum were separated from endogenous steroids and pharmaceuticals by solid-phase extraction followed by fractionation by high-performance liquid chromatography. After dissolution of the isolated fraction in ethanol-DMSO, the reconstituted extract was added with estrogen-depleted fetal calf serum to MCF-7 cells, the growth of which is stimulated by estrogen. After a 6-day incubation on a microwell plate, cell proliferation was assessed and compared with the effect of a 17-beta-estradiol standard. RESULTS AND CONCLUSIONS: To determine the applicability of this approach, we assessed the estrogenicity of serum samples from 30 pregnant and 60 non-pregnant Danish women thought to be exposed only to low levels of endocrine disruptors. We also studied 211 serum samples from pregnant Faroese women, whose marine diet included whale blubber that contain a high concentration of persistent halogenated pollutants. The estrogenicity of the serum from Danish controls exceeded the background in 22.7 % of the cases, while the same was true for 68.1 % of the Faroese samples. The increased estrogenicity response did not correlate with the lipid-based concentrations of individual suspected endocrine disruptors in the Faroese samples. When added along with the estradiol standard, an indication of an enhanced estrogenic response was found in most cases. Thus, the in vitro estrogenicity response offers a promising and feasible approach for an aggregated exposure assessment for xenoestrogens in serum

    Changes over time in characteristics, resource use and outcomes among ICU patients with COVID-19-A nationwide, observational study in Denmark

    Get PDF
    BACKGROUND: Characteristics and care of intensive care unit (ICU) patients with COVID‐19 may have changed during the pandemic, but longitudinal data assessing this are limited. We compared patients with COVID‐19 admitted to Danish ICUs in the first wave with those admitted later. METHODS: Among all Danish ICU patients with COVID‐19, we compared demographics, chronic comorbidities, use of organ support, length of stay and vital status of those admitted 10 March to 19 May 2020 (first wave) versus 20 May 2020 to 30 June 2021. We analysed risk factors for death by adjusted logistic regression analysis. RESULTS: Among all hospitalised patients with COVID‐19, a lower proportion was admitted to ICU after the first wave (13% vs. 8%). Among all 1374 ICU patients with COVID‐19, 326 were admitted during the first wave. There were no major differences in patient's characteristics or mortality between the two periods, but use of invasive mechanical ventilation (81% vs. 58% of patients), renal replacement therapy (26% vs. 13%) and ECMO (8% vs. 3%) and median length of stay in ICU (13 vs. 10 days) and in hospital (20 vs. 17 days) were all significantly lower after the first wave. Risk factors for death were higher age, larger burden of comorbidities (heart failure, pulmonary disease and kidney disease) and active cancer, but not admission during or after the first wave. CONCLUSIONS: After the first wave of COVID‐19 in Denmark, a lower proportion of hospitalised patients with COVID‐19 were admitted to ICU. Among ICU patients, use of organ support was lower and length of stay was reduced, but mortality rates remained at a relatively high level

    Density‐ and size‐dependent mortality in fish early life stages

    Get PDF
    The importance of survival and growth variations early in life for population dynamics depends on the degrees of compensatory density dependence and size dependence in survival at later life stages. Quantifying density‐ and size‐dependent mortality at different juvenile stages is therefore important to understand and potentially predict the recruitment to the population. We applied a statistical state‐space modelling approach to analyse time series of abundance and mean body size of larval and juvenile fish. The focus was to identify the importance of abundance and body size for growth and survival through successive larval and juvenile age intervals, and to quantify how the dynamics propagate through the early life to influence recruitment. We thus identified both relevant ages and mechanisms (i.e. density dependence and size dependence in survival and growth) linking recruitment variability to early life dynamics. The analysis was conducted on six economically and ecologically important fish populations from cold temperate and sub‐arctic marine ecosystems. Our results underscore the importance of size for survival early in life. The comparative analysis suggests that size‐dependent mortality and density‐dependent growth frequently occur at a transition from pelagic to demersal habitats, which may be linked to competition for suitable habitat. The generality of this hypothesis warrants testing in future research.publishedVersio

    EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12.As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.publishersversionpublishe

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032).As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants from three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years, and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, and benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs, and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with the highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European-wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability, and will give leverage to national policymakers for the implementation of targeted measures.info:eu-repo/semantics/publishedVersio
    corecore